
UNIVERSITY OF NIS   FACULTY OF MECHANICAL ENGINEERING 

 

THE TENTH INTERNATIONAL CONFERENCE 

TRANSPORT AND LOGISTICS 
 

 
 

 

 

 

 

OPTIMIZATION OF FLEXIBLE  

JOB SHOP SCHEDULING  

WITH MACHINE TOOL 

BREAKDOWNS 

 

Katarina BRENJO1 

Aleksandar JOKIĆ 1 

Milica PETROVIĆ 1 

 
1) University of Belgrade – Faculty of Mechanical 

Engineering, Department of Production Engineering 

 

 

Abstract 

 

The growing number of cyber-attacks on industrial 

systems increasingly affects manufacturing by causing 

unexpected machine tool failures and workflow 

interruptions. These security-driven disturbances demand 

scheduling models that can adapt rapidly. This research 

paper addresses the flexible job shop scheduling problem 

under temporary machine breakdowns triggered by 

cyber-attacks. After the attack is resolved, the affected 

machine tools must be efficiently reintegrated into the 

rescheduling process to maintain production stability. To 

generate effective rescheduling, this research applies the 

Genetic Algorithm, a biologically inspired metaheuristic 

especially suitable for solving complex NP-hard 

scheduling problems. The proposed method supports 

adaptive, real-time rescheduling while further addressing 

the optimization of two key performance criteria: 

balanced machine utilization and mean flow time. The 

approach is implemented in MATLAB® and validated 

through simulations on relevant benchmark problems. 

Experimental results confirm improved responsiveness, 

better resource balance, and enhanced efficiency under 

cyber-induced machine failures, contributing to a more 

flexible and resilient rescheduling. 

 

Keywords: genetic algorithm, rescheduling, optimization, 

manufacturing systems, machine tool breakdown, cyber-

attack. 

1 INTRODUCTION 

Production scheduling has become increasingly complex as 

manufacturing systems evolve toward higher levels of 

automation, connectivity, and digital integration. Among 

the various scheduling models, the Job Shop Scheduling 

Problem (JSSP) and its extended form, the Flexible Job 

Shop Scheduling Problem (FJSSP), have attracted 

significant research interest due to their relevance in real-

world manufacturing environments. Unlike traditional 

JSSP, where each operation is assigned to a single 

predefined machine, FJSSP offers routing flexibility, 

allowing operations to be processed on multiple alternative 

machines. This additional flexibility expands the solution 

space but also increases computational complexity, placing 

the FJSSP among the most challenging NP-hard 

optimization problems [1]. While many studies on FJSSP 

focus on deterministic conditions – assuming stable 

processing times, uninterrupted machine availability, and 

predictable workflow – real manufacturing systems rarely 

operate under such ideal circumstances. Real 

manufacturing environments are exposed to a wide range 

of uncertainties, including variable processing times, the 

arrival of new or urgent jobs, and unexpected machine 

failures [2]. These disturbances can significantly degrade 

the performance of schedules generated under deterministic 

assumptions, making adaptability and robustness essential 

requirements for any practical rescheduling method. Robust 

approaches are designed to maintain stability of key 

scheduling criteria, such as makespan, flow time, and 

machine workload, while generating effective rescheduling 

plans in response to dynamic disturbances [3]. 

In recent years, a growing concern has emerged regarding 

cybersecurity risks in industrial systems. Cyber-attacks 

targeting machine tools, industrial controllers, or 

production databases can temporarily disable equipment, 

disrupt material flow, or cause unexpected shutdowns [4]. 

Such attacks introduce a new type of disturbance that is 

often difficult to predict, and capable of causing substantial 

scheduling instability. Once the consequences of the attack 

are resolved, the affected machines must be efficiently 

reintegrated into manufacturing system, making dynamic 

and responsive rescheduling critical maintaining overall 

system stability. As the adoption of smart manufacturing 

technologies expands, studies highlight that the exposure 

and frequency of cyber-induced disturbances continue to 

grow [5]. 

To address these challenges, researchers are increasingly 

adopting metaheuristic optimization techniques to manage 

large-scale, dynamic, and multi-objective scheduling 

problems. Genetic Algorithms (GA), inspired by biological 

evolution, have proven particularly effective for solving 

complex scheduling tasks due to their strong global search 

capabilities, robustness to dynamic changes, and flexibility 

in handling multiple objectives [6]. Moreover, their ability 

to continuously update the solution population allows GA 

to accommodate structural changes in the scheduling 

environment, making them well suited for adaptive 

rescheduling following the occurrence of the disturbance. 

Having that in mind, this research focuses on the FJSSP 

under temporary machine tool failures caused by cyber-

attacks. A GA-based rescheduling framework is developed 

to efficiently reintegrate machine tools into manufacturing 

system once they become operational again. The proposed 

method optimizes two key criteria: (i) balanced machine 

utilization [7] and (ii) mean flow time [8], to achieve stable, 

efficient, and resource-aware rescheduling. The 

methodology is implemented in MATLAB® and evaluated 

using benchmark problems to determine its responsiveness 

and effectiveness under real-world dynamic conditions. 



The research paper is structured as follows: Section 2 

presents the formulation of the dynamic FJSSP under 

machine tool breakdowns and defines the performance 

criteria used in this study. Section 3 describes the GA-

based rescheduling methodology. Section 4 presents the 

experimental results, and Section 5 concludes the research 

paper with final remarks and directions for future research. 

2 MACHINE TOOL BREAKDOWN 

In Dynamic Flexible Job Shop Scheduling (DFJSS), 

machine tool breakdowns are among the most critical 

disturbances, directly affecting the continuity and 

reliability of the manufacturing process. When such 

breakdowns are intentionally induced or amplified by 

cyber-attacks, their impact becomes even more severe. 

These cyber-induced failures can temporarily disable 

multiple machine tools at different points in time, disrupt 

previously optimized schedules, and create complex 

rescheduling requirements. For this reason, it is essential 

to analyze machine tool breakdowns in detail and to 

develop rescheduling strategies that explicitly account for 

their timing, duration, and overall impact through the 

manufacturing system. The following subsections 

introduce the mathematical model and objective functions 

used to describe this disturbance type, as well as the 

rescheduling approach for generating optimal schedules 

after cyber-induced machine tool failures. 

2.1. Objective functions 

Based on the mathematical formulation defined in [9], 

three alternative manufacturing process plans are 

generated for each job, incorporating both operation 

processing times and transportation time between 

alternative machine tools. These alternative plans are 

generated based on the criterion of minimizing total 

production time. The resulting process plans provide key 

input parameters for the scheduling process, while the 

final assignment and sequencing of operations are 

established through the subsequent optimization process. 

To determine the optimal scheduling and rescheduling 

plans, this research paper considers two objective 

functions originally formulated in [10]. The mathematical 

formulation of balanced machine utilization is defined as: 

 

𝑜𝑏𝑗1 = min (max{𝑐𝑖𝑗} + ∑ |∑ 𝑝𝑖𝑗𝑚 − 𝑎𝑚𝑡|
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where 𝑐𝑖𝑗 is the completion time of operation 𝑂𝑖𝑗, ∑ 𝑝𝑖𝑗𝑚 

is the total processing time of a machine, 𝑎𝑚𝑡 is the 

average processing time of all machines, 𝑚 is the total 

number of machines,  𝑂𝑖𝑗 is 𝑗-th operation of 𝑖-th job, and 

𝑀𝑎 is the alternative machine tool for operation 𝑂𝑖𝑗. 

The mathematical formulation of minimizing mean flow 

time is given with the following equation: 

𝑜𝑏𝑗2 = min (
1

𝑁
∑ 𝑐𝑖

𝑁

𝑖=1

) (3) 

where 𝑁 is number of jobs, 𝑖 = 1, … , 𝑁 and 𝑐𝑖 is the 

completion time of the job 𝑖. 

2.2. Description of the Machine Tool Breakdown 

Before explaining the proposed rescheduling 

methodology in detail, it is necessary to clarify how 

disturbances affect the implementation of the initial 

schedule. Among the various disturbances that may occur 

in real manufacturing systems, a machine tool breakdown 

represents one of the most severe, as it directly interrupts 

the processing of ongoing operations and affects all 

subsequent operations assigned to the failed machine tool. 

To illustrate this disturbance and its impact on the 

scheduling process, a simplified example is introduced 

next. Selected alternative manufacturing process networks 

for processing three jobs are presented in Figure 1, where 

jobs 1 and 2 each involve three operations, while job 3 

requires only two. 

 

 

Figure 1. Alternative process plans 

Figure 2 illustrates a simplified job shop scheduling 

problem in which three jobs are processed on three 

alternative machine tools. The Gantt chart represents the 

initial scheduling plan, as it would be carried out in an 

ideal manufacturing environment, providing a clear 

baseline representation of job sequences and machine tool 

allocations before the disturbance occurs.  

 

 

Figure 2. Gantt chart of job shop scheduling 

A machine tool breakdown results in the rescheduling of 

all operations in progress on the failed machine that were 

unfinished at the moment of failure, as well as all 

operations scheduled to start after the breakdown, even if 



they were initially assigned to other machine tools that 

remain available. Modeling approaches for handling such 

disturbances typically assume that all incomplete 

operations are reassigned to alternative machine tools to 

continue processing the corresponding job, thereby 

maintaining efficiency and optimizing the rescheduling 

process. However, if no alternative machine tool is 

provided for processing the affected jobs, the affected 

operations must be performed on the original machine as 

soon as the breakdown is resolved (Figure 3).  

 

 

Figure 3. Gantt chart of rescheduling due to the             

breakdown of machine tool M3 

The following assumptions are taken into account during 

the rescheduling processes illustrated in Figure 3:  

• The time required for rescheduling is considered to 

have no substantial impact, and processing of all jobs 

on all machine tools resumes immediately after the 

rescheduling is completed.  

• At any given moment, each machine tool can process 

only one operation of a single job. 

• Jobs are available for processing starting from time 

𝑡0 = 0 in the initial scheduling plan, and from time 

𝑡 = 𝑟𝑖 after a disturbance occurs, where 𝑟𝑖  represents 

the release time – the earliest moment when the next 

operation of job 𝑖 can initiate.  

• Different operations of the same job cannot be 

processed simultaneously. 

• Once an operation on a machine tool is completed, the 

job is immediately transferred to the machine where 

the next operation is scheduled, considering also the 

transportation time between machines. 

• The setup time of the machine tool, as well as other 

production resources for the subsequent operation, is 

not taken into account.  

2.3. Mathematical formulation 

The mathematical model of DFJSS problem under 

machine tool breakdown is based on relevant research in 

[11, 12]. 

List of symbols: 

𝑁 – number of jobs 𝑖 = 1, … , 𝑁;  

𝑀 – number of machine tools, 𝑚 = 1, … , 𝑀; 

𝑂𝑖𝑗𝑘
𝑚  – the 𝑘-th operation of the 𝑗-th alternative 

manufacturing process of job 𝑖 executed on machine tool 

𝑚; 

𝑟𝑖 – release time for job 𝑖 is the earliest time when the 

next operation of job 𝑖 can start after the disturbance 

occurs; 

𝑟𝑚 – release time for machine 𝑚 is the earliest time when 

the next operation can start on machine tool 𝑚 after the 

disturbance occurs; 

𝑡𝑚𝑏 – start time of the machine tool breakdown; 

𝑡𝑑𝑢𝑟 – duration of the machine tool breakdown; 

𝑠𝑖𝑗𝑘
𝑚  – start time of the operation 𝑂𝑖𝑗𝑘

𝑚 ; 

𝑐𝑖𝑗𝑘
𝑚  – completion time of the operation 𝑂𝑖𝑗𝑘

𝑚 ; 

𝑧𝑖𝑗𝑘
𝑚  – a binary variable that takes the value 1 if the 

machine tool assigned to perform 𝑂𝑖𝑗𝑘
𝑚  remains 

unchanged, and 0 otherwise. 

In the case of a machine tool breakdown presented in 

Figure 3, the completed operations O11, O21, and O31, are 

excluded from rescheduling, as well as operation O12 that 

was in progress on a machine unaffected by the failure. On 

the other hand, operations O22 and O23, which were initially 

assigned to the failed machine tool after the disturbance 

occurred, must be included in the rescheduling process, 

along with all operations scheduled for later processing on 

other machines (such as O13 and O32). The earliest possible 

start time of the next operation of job 𝑖 after the occurrence 

of the disturbance can be calculated using equation (4) and 

equation (5): 

 

𝑟𝑖 = 𝑐𝑖𝑗𝑘
𝑚 × 𝑧𝑖𝑗𝑘

𝑚 + 𝑡𝑚𝑏 × (1 − 𝑧𝑖𝑗𝑘
𝑚 ),   𝑚 ≠ 𝑟, (4) 

 

𝑟𝑖 =

            
(𝑐𝑖𝑗𝑘

𝑚 + 𝑡𝑑𝑢𝑟) × 𝑧𝑖𝑗𝑘
𝑚 + 𝑡𝑚𝑏 × (1 − 𝑧𝑖𝑗𝑘

𝑚 ),
 𝑚 = 𝑟,

 (5) 

 

where 𝑟 represents the machine tool that has failed. 

If 𝑚 ≠ 𝑟, two possible cases arise. The first case occurs 

when operation 𝑂𝑖𝑗𝑘
𝑚  was performing at the moment of the 

failure of another machine tool, in which case 𝑧𝑖𝑗𝑘
𝑚 = 1, i.e., 

the operation continues to be performed on machine 𝑚, and 

the equation (4) reduces to the equation (6): 

 

𝑟𝑖 = 𝑐𝑖𝑗𝑘
𝑚 = {𝑠𝑖𝑗𝑘

𝑚 + 𝑡𝑖𝑗𝑘
𝑚 ⃒𝑠𝑖𝑗𝑘

𝑚 < 𝑡𝑚𝑏 < 𝑐𝑖𝑗𝑘
𝑚 }, 

𝑖 ∈ 𝑁. 
(6) 

 

The second case applies when operation 𝑂𝑖𝑗𝑘
𝑚  was 

completed before the failure of the other machine tool, in 

which case 𝑧𝑖𝑗𝑘
𝑚 = 0, since it is unknown whether the next 

operation of job i will be performed on the same machine 

𝑚 as the previous one, as presented in equation (7): 

 

𝑟𝑖 = 𝑡𝑚𝑏 = max ({𝑐𝑖𝑗𝑘
𝑚 ⃒𝑐𝑖𝑗𝑘

𝑚 < 𝑡𝑚𝑏} , 𝑡𝑚𝑏) ,   𝑖 ∈ 𝑁. (7) 

 

If 𝑚 = 𝑟 and 𝑠𝑖𝑗𝑘
𝑚 < 𝑡𝑚𝑏 < 𝑐𝑖𝑗𝑘

𝑚 , this indicates that the 

machine tool on which the operation 𝑂𝑖𝑗𝑘
𝑚  was in progress 

has failed. For the further processing of the interrupted 

operation, two cases are possible. The first case assumes 

transferring the operation 𝑂𝑖𝑗𝑘
𝑚  to another alternative 

machine tool 𝑚, in which case 𝑧𝑖𝑗𝑘
𝑚 = 0, and equation (5) is 

replaced by equation (8): 

 

𝑟𝑖 = 𝑡𝑚𝑏. (8) 

 

The second case occurs when the operation must resume on 

the same machine tool that is currently failed. In this 



situation, 𝑧𝑖𝑗𝑘
𝑚 = 1, and the repair time 𝑡𝑑𝑢𝑟 of machine 𝑚 

must be included, as expressed in equation (9): 

 

𝑟𝑖 = 𝑐𝑖𝑗𝑘
𝑚 + 𝑡𝑑𝑢𝑟. (9) 

 

It should be noted that in equation (9), 𝑐𝑖𝑗𝑘
𝑚 , the completion 

time of the operation 𝑂𝑖𝑗𝑘
𝑚 , takes the value 𝑡𝑚𝑏, because the 

operation is interrupted at the moment the disturbance 

occurs. Therefore, that moment is considered the current 

end time of processing for operation 𝑂𝑖𝑗𝑘
𝑚 .  

Following the previous evaluation of the time when 

processing of job i can be resumed –  𝑟𝑖, the time at which 

the machine tool 𝑚 can resume processing the job –  𝑟𝑚, is 

calculated according to expression (10) and equation (11): 

 

𝑟𝑚 = 𝑐𝑖𝑗𝑘
𝑚 × 𝑧𝑖𝑗𝑘

𝑚 + 𝑡𝑚𝑏 × (1 − 𝑧𝑖𝑗𝑘
𝑚 ),   𝑚 ≠ 𝑟,   (10) 

 

 

𝑟𝑚 = (𝑐𝑖𝑗𝑘
𝑚 + 𝑡𝑑𝑢𝑟) × 𝑧𝑖𝑗𝑘

𝑚 + 

+(𝑡𝑚𝑏 + 𝑡𝑑𝑢𝑟) × (1 − 𝑧𝑖𝑗𝑘
𝑚 ),   𝑚 = 𝑟. 

(11) 

3 GA METHODOLOGY 

A Genetic Algorithm (GA), as a biologically inspired 

optimization approach, is employed to generate an optimal 

scheduling plan based on the formulated mathematical 

model. Accordingly, the GA encodes each scheduling 

solution as a chromosome composed of two structured 

substrings: the primary substring encodes the operation 

sequence that defines the scheduling plan, while the 

secondary substring represents the selected alternative 

manufacturing process plans (Figure 4). The initial 

population is generated according to the number of jobs 

and the maximum number of operations, while the 

objective functions are evaluated using the mathematical 

models for optimization defined in equations (1), (2), and 

(3).   

 

Figure 4. Scheduling plan and alternative 

manufacturing processes 

To obtain optimal scheduling plans, the GA implements an 

iterative evolutionary process. At the beginning, the 

following parameters are initialized: the population size, 

the total number of generations, the crossover probability 

pc, the mutation probability pm, and the number of elite 

chromosomes. Elite chromosomes represent the best 

individuals of the current generation and they are passed 

directly into the next generation. Each generation is 

improved by applying the GA operators of selection, 

crossover, and mutation. This process allows the algorithm 

to explore a vast solution space, maintain diversity, and 

converge toward optimal or near-optimal schedules. 

Selection involves selecting two parent chromosomes from 

the current population using roulette-wheel selection, 

where the probability of choosing a particular chromosome 

is proportional to its objective function value. 

During the crossover step, the operator is first applied to 

the secondary substring, in which randomly selected genes 

from Parent1 and Parent2 define the secondary substring of 

Offspring1 (Figure 5). Offspring1 inherits the second gene 

from Parent1 in its secondary substring which represents 

the gene for the second job; therefore, the corresponding 

genes from the primary substring of Parent1 are copied into 

the same positions of Offspring1 (including the zero 

element). The remaining positions are then sequentially 

filled with the remaining genes from Parent2. Similarly, 

Offspring2 is created by reversing the parental roles: the 

same exchange is applied to the secondary substring, the 

corresponding genes from the primary substring of Parent2 

are copied into their positions, and the empty positions are 

filled with the remaining genes from Parent1.   

 

Figure 5. Crossover 

The first mutation operator is a two-position swapping 

mutation, performed in three steps. First, one Parent 

chromosome is selected. Second, two genes within the 

primary substring (the scheduling plan) are randomly 

chosen. Finally, a new Offspring chromosome is generated 

by exchanging the positions of the randomly selected genes 

(Figure 6). 

 

Figure 6. First mutation operator 

The second mutation operator is used to generate new 

Offspring by modifying one alternative manufacturing 

process plan of a selected job. This operator changes a 

single gene in the secondary substring, in this way 

introducing a different alternative process plan for the third 

job and increasing the diversity of potential scheduling 

solutions (Figure 7). 

 

Figure 7. Second mutation operator 

When a disturbance occurs, the GA generates an optimal 

rescheduling plan by repeating the same evolutionary steps 



of selection (via roulette wheel), crossover, and mutation, 

considering machine tool breakdowns. In this process, the 

initial population is generated to reflect the current state of 

the manufacturing system. 

4 RESULTS AND DISCUSSIONS 

To verify the mathematical models developed for the 

DFJSS problem under machine tool breakdowns, two 

comprehensive experiments were carried out using 

Problem 24 from the relevant literature. This problem 

includes 18 benchmark jobs with AND/OR networks of 

alternative manufacturing processes, all adopted from the 

reference [10]. For each job, three alternative process plans 

were generated and used during the scheduling 

optimization. 

A genetic algorithm was applied for both the initial 

scheduling and the rescheduling process following a 

machine breakdown disturbance. The first experiment used 

balanced machine utilization as the objective function for 

the optimization, while the second experiment focused on 

minimizing mean flow time. For the initial scheduling 

phase, the GA parameters were set to a population size of 

100, a maximum of 80 generations, a crossover probability 

of 0.8, a mutation probability of 0.2 and 2 elite 

chromosomes. In the rescheduling phase, the population 

size was increased to 120 and the number of generations to 

100 to enhance solution diversity after the disturbances. 

The crossover and mutation probabilities, as well as the 

number of elite chromosomes, were kept identical to those 

used in the initial phase. The proposed method and the 

corresponding experiments are implemented and tested in 

MATLAB® environment.  

The scheduling of the selected manufacturing processes for 

the initial set of jobs (1-2-3-4-5-6-7-8-9-10-11-12-13-14-

15-16-17-18 – Problem 24) proceeded without disturbance 

until the breakdown of machine tool M2 at 30 s, machine 

tool M7 at 20 s, machine tool M10 at 40 s, and machine 

tool M13 at 35 s, with each machine requiring a different 

amount of time to be to be fixed and become operational 

again. In the initial phase, before any breakdowns occurred, 

the GA generated an initial scheduling plan that selected 

alternative manufacturing processes for all eighteen jobs. 

Within the proposed rescheduling strategy, the schedule is 

not updated at the exact moment an individual breakdown 

occurs. Instead, all breakdown events are first identified 

based on their start times and durations, after which the 

affected operations are detected and removed from the 

original schedule. A new partial schedule is then generated 

that contains only the operations completed prior to the 

occurrence of any machine tool breakdown.  

Once all machine tools are restored and available again, a 

single global rescheduling process is performed. The GA is 

then applied to reschedule only the remaining operations, 

ensuring that all machine tool failures (regardless of their 

order or timing) are handled simultaneously through a 

single rescheduling process.  

A new primary substring is generated to encode all 

unfinished operations, including those in progress at the 

time of the breakdowns or scheduled to start during 

downtime on the failed machine tools. A new secondary 

substring is also generated, reflecting the updated selection 

of alternative manufacturing processes available for each 

job. During this step, if an alternative process plan that 

avoids machine tools affected by breakdowns is available, 

the algorithm selects this alternative to achieve a more 

efficient rescheduling. If an alternative process of this type 

is not available for a particular operation, the operation 

remains assigned to its original machine tool, but its earliest 

possible start time is shifted to the moment when the 

machine is fully functional again. In such cases, the start 

time is computed as the breakdown end time plus the 

required transportation time from the previous machine, if 

applicable. In the second phase, the GA performs 

rescheduling using the updated set of operations and 

manufacturing routes, ensuring that all remaining 

operations comply with the constraints imposed by 

machine tool downtime and the subsequent machine 

recovery process. 

Figure 8 shows the Gantt chart representing the initial, 

optimal scheduling plan prior to the machine tool 

breakdowns, obtained by applying balanced machine 

utilization (obj1) as the objective function. 

 

Figure 8. Gantt chart of the initial scheduling plan 

(balanced machine utilization - obj1) 

After the four machine tool breakdowns and the following 

optimization, a new rescheduling plan is formed and 

shown in Figure 9.  

 

Figure 9. Gantt chart of the rescheduling plan  

(balanced machine utilization - obj1) 



Figure 10 illustrates the initial optimal scheduling plan 

before the machine tool breakdowns, generated using 

mean flow time (obj2) as the objective function. 

 

Figure 10. Gantt chart of the initial scheduling plan  

(mean flow time - obj2) 

As in the previous experiment, following the four 

machine tool breakdowns and the subsequent 

rescheduling process, a new optimized plan is generated 

and shown in Figure 11. 

 

Figure 11. Gantt chart of the rescheduling plan  

(mean flow time - obj2) 

The resulting Gantt charts confirm that the proposed 

method successfully generates a new rescheduling plan 

under multiple machine tool breakdowns. In both 

experiments, the algorithm effectively reschedules the 

remaining operations to the available machine tools, while 

respecting process constraints, operation sequences, and 

downtime intervals. The balanced machine utilization 

criterion leads to a more uniform workload distribution 

across machines, whereas the mean flow time criterion 

results in faster completion of individual jobs. Overall, the 

visualized schedules demonstrate that the method 

maintains system stability and achieves the intended 

optimization objectives despite significant disturbances. 

5 CONCLUSION 

This research analyzed the flexible job shop rescheduling 

process under machine tool breakdowns occurring on 

multiple machines at different time instances, reflecting 

real cyber-induced disturbances in modern manufacturing 

environments. By employing a GA and evaluating the 

performance of the manufacturing system through 

balanced machine utilization and mean flow time, the 

proposed approach demonstrated the ability to efficiently 

reschedule operations during periods of machine 

unavailability while maintaining overall stability.  

Two separate experiments were carried out, one focusing 

on balanced machine utilization and the other on 

minimizing mean flow time, to evaluate the overall 

performance of the manufacturing system under different 

optimization objectives. The results indicate that, even 

when disturbances interrupt the workflow, the system can 

dynamically reschedule the remaining operations across 

the available machine tools without creating excessive 

bottlenecks or overloading specific resources. Once the 

consequences of the cyber-attacks and the corresponding 

machine tool failures are resolved, the approach 

effectively reintegrates the recovered machine tools into 

the rescheduling plan, resulting in successful optimization 

of the defined criteria. Therefore, this adaptability 

contributes to a more uniform workload distribution and 

reduced flow times, ensuring a robust and resilient 

scheduling process under security-driven disturbances. 

Future research may focus on incorporating predictive 

mechanisms for early disturbance detection, as well as on 

exploring advanced or hybrid metaheuristic methods to 

further improve responsiveness and enhance the resilience 

of scheduling systems operating in cybersecurity-aware 

manufacturing environments. 
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