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Abstract

The growing number of cyber-attacks on industrial
systems increasingly affects manufacturing by causing
unexpected machine tool failures and workflow
interruptions. These security-driven disturbances demand
scheduling models that can adapt rapidly. This research
paper addresses the flexible job shop scheduling problem
under temporary machine breakdowns triggered by
cyber-attacks. After the attack is resolved, the affected
machine tools must be efficiently reintegrated into the
rescheduling process to maintain production stability. To
generate effective rescheduling, this research applies the
Genetic Algorithm, a biologically inspired metaheuristic
especially  suitable for solving complex NP-hard
scheduling problems. The proposed method supports
adaptive, real-time rescheduling while further addressing
the optimization of two key performance criteria:
balanced machine utilization and mean flow time. The
approach is implemented in MATLAB® and validated
through simulations on relevant benchmark problems.
Experimental results confirm improved responsiveness,
better resource balance, and enhanced efficiency under
cyber-induced machine failures, contributing to a more
flexible and resilient rescheduling.

Keywords: genetic algorithm, rescheduling, optimization,
manufacturing systems, machine tool breakdown, cyber-
attack.

1 INTRODUCTION

Production scheduling has become increasingly complex as
manufacturing systems evolve toward higher levels of
automation, connectivity, and digital integration. Among
the various scheduling models, the Job Shop Scheduling
Problem (JSSP) and its extended form, the Flexible Job

til

Shop Scheduling Problem (FJSSP), have attracted
significant research interest due to their relevance in real-
world manufacturing environments. Unlike traditional
JSSP, where each operation is assigned to a single
predefined machine, FJSSP offers routing flexibility,
allowing operations to be processed on multiple alternative
machines. This additional flexibility expands the solution
space but also increases computational complexity, placing
the FJSSP among the most challenging NP-hard
optimization problems [1]. While many studies on FISSP
focus on deterministic conditions — assuming stable
processing times, uninterrupted machine availability, and
predictable workflow — real manufacturing systems rarely
operate under such ideal circumstances. Real
manufacturing environments are exposed to a wide range
of uncertainties, including variable processing times, the
arrival of new or urgent jobs, and unexpected machine
failures [2]. These disturbances can significantly degrade
the performance of schedules generated under deterministic
assumptions, making adaptability and robustness essential
requirements for any practical rescheduling method. Robust
approaches are designed to maintain stability of key
scheduling criteria, such as makespan, flow time, and
machine workload, while generating effective rescheduling
plans in response to dynamic disturbances [3].

In recent years, a growing concern has emerged regarding
cybersecurity risks in industrial systems. Cyber-attacks
targeting machine tools, industrial controllers, or
production databases can temporarily disable equipment,
disrupt material flow, or cause unexpected shutdowns [4].
Such attacks introduce a new type of disturbance that is
often difficult to predict, and capable of causing substantial
scheduling instability. Once the consequences of the attack
are resolved, the affected machines must be efficiently
reintegrated into manufacturing system, making dynamic
and responsive rescheduling critical maintaining overall
system stability. As the adoption of smart manufacturing
technologies expands, studies highlight that the exposure
and frequency of cyber-induced disturbances continue to
grow [5].

To address these challenges, researchers are increasingly
adopting metaheuristic optimization techniques to manage
large-scale, dynamic, and multi-objective scheduling
problems. Genetic Algorithms (GA), inspired by biological
evolution, have proven particularly effective for solving
complex scheduling tasks due to their strong global search
capabilities, robustness to dynamic changes, and flexibility
in handling multiple objectives [6]. Moreover, their ability
to continuously update the solution population allows GA
to accommodate structural changes in the scheduling
environment, making them well suited for adaptive
rescheduling following the occurrence of the disturbance.
Having that in mind, this research focuses on the FISSP
under temporary machine tool failures caused by cyber-
attacks. A GA-based rescheduling framework is developed
to efficiently reintegrate machine tools into manufacturing
system once they become operational again. The proposed
method optimizes two key criteria: (i) balanced machine
utilization [7] and (ii) mean flow time [8], to achieve stable,
efficient, and resource-aware  rescheduling. The
methodology is implemented in MATLAB® and evaluated
using benchmark problems to determine its responsiveness
and effectiveness under real-world dynamic conditions.



The research paper is structured as follows: Section 2
presents the formulation of the dynamic FJSSP under
machine tool breakdowns and defines the performance
criteria used in this study. Section 3 describes the GA-
based rescheduling methodology. Section 4 presents the
experimental results, and Section 5 concludes the research
paper with final remarks and directions for future research.

2 MACHINE TOOL BREAKDOWN

In Dynamic Flexible Job Shop Scheduling (DFJSS),
machine tool breakdowns are among the most critical
disturbances, directly affecting the continuity and
reliability of the manufacturing process. When such
breakdowns are intentionally induced or amplified by
cyber-attacks, their impact becomes even more severe.
These cyber-induced failures can temporarily disable
multiple machine tools at different points in time, disrupt
previously optimized schedules, and create complex
rescheduling requirements. For this reason, it is essential
to analyze machine tool breakdowns in detail and to
develop rescheduling strategies that explicitly account for
their timing, duration, and overall impact through the
manufacturing system. The following subsections
introduce the mathematical model and objective functions
used to describe this disturbance type, as well as the
rescheduling approach for generating optimal schedules
after cyber-induced machine tool failures.

2.1. Objective functions

Based on the mathematical formulation defined in [9],
three alternative manufacturing process plans are
generated for each job, incorporating both operation
processing times and transportation time between
alternative machine tools. These alternative plans are
generated based on the criterion of minimizing total
production time. The resulting process plans provide key
input parameters for the scheduling process, while the
final assignment and sequencing of operations are
established through the subsequent optimization process.

To determine the optimal scheduling and rescheduling
plans, this research paper considers two objective
functions originally formulated in [10]. The mathematical
formulation of balanced machine utilization is defined as:

obj1 = min (max{cij} + Z |Z Dijm — amt|> )
a=1

1 m
a=1

where ¢;; is the completion time of operation O;j, ¥, Pijm
is the total processing time of a machine, amt is the
average processing time of all machines, m is the total
number of machines, 0;; is j-th operation of i-th job, and
M, is the alternative machine tool for operation O;;.

The mathematical formulation of minimizing mean flow
time is given with the following equation:

N

. (1

obj2 = min (Nz ci> 3)
=1

where N is number of jobs, i =1,...,N and c; is the

completion time of the job i.

2.2. Description of the Machine Tool Breakdown

Before  explaining the  proposed  rescheduling
methodology in detail, it is necessary to clarify how
disturbances affect the implementation of the initial
schedule. Among the various disturbances that may occur
in real manufacturing systems, a machine tool breakdown
represents one of the most severe, as it directly interrupts
the processing of ongoing operations and affects all
subsequent operations assigned to the failed machine tool.
To illustrate this disturbance and its impact on the
scheduling process, a simplified example is introduced
next. Selected alternative manufacturing process networks
for processing three jobs are presented in Figure 1, where
jobs 1 and 2 each involve three operations, while job 3
requires only two.
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Figure 1. Alternative process plans

Figure 2 illustrates a simplified job shop scheduling
problem in which three jobs are processed on three
alternative machine tools. The Gantt chart represents the
initial scheduling plan, as it would be carried out in an
ideal manufacturing environment, providing a clear
baseline representation of job sequences and machine tool
allocations before the disturbance occurs.
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Figure 2. Gantt chart of job shop scheduling

A machine tool breakdown results in the rescheduling of
all operations in progress on the failed machine that were
unfinished at the moment of failure, as well as all
operations scheduled to start after the breakdown, even if



they were initially assigned to other machine tools that
remain available. Modeling approaches for handling such
disturbances typically assume that all incomplete
operations are reassigned to alternative machine tools to
continue processing the corresponding job, thereby
maintaining efficiency and optimizing the rescheduling
process. However, if no alternative machine tool is
provided for processing the affected jobs, the affected
operations must be performed on the original machine as
soon as the breakdown is resolved (Figure 3).
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Figure 3. Gantt chart of rescheduling due to the
breakdown of machine tool M3

The following assumptions are taken into account during
the rescheduling processes illustrated in Figure 3:

e The time required for rescheduling is considered to
have no substantial impact, and processing of all jobs
on all machine tools resumes immediately after the
rescheduling is completed.

e At any given moment, each machine tool can process
only one operation of a single job.

e Jobs are available for processing starting from time
to = 0 in the initial scheduling plan, and from time
t = r; after a disturbance occurs, where r; represents
the release time — the earliest moment when the next
operation of job i can initiate.

e Different operations of the same job cannot be
processed simultaneously.

e Once an operation on a machine tool is completed, the
job is immediately transferred to the machine where
the next operation is scheduled, considering also the
transportation time between machines.

e The setup time of the machine tool, as well as other
production resources for the subsequent operation, is
not taken into account.

2.3. Mathematical formulation

The mathematical model of DFJSS problem under
machine tool breakdown is based on relevant research in
[11,12].
List of symbols:
N —number of jobsi =1, ..., N;
M — number of machine tools, m =1, ..., M;

ijx — the k-th operation of the j-th alternative
manufacturing process of job i executed on machine tool
m;
1; — release time for job i is the earliest time when the
next operation of job i can start after the disturbance
occurs;

1, — release time for machine m is the earliest time when
the next operation can start on machine tool m after the
disturbance occurs;

tmp — start time of the machine tool breakdown;

t qur — duration of the machine tool breakdown;

S — start time of the operation O7;

cijx — completion time of the operation O

zjj; — a binary variable that takes the value 1 if the
machine tool assigned to perform Ofj, remains
unchanged, and 0 otherwise.

In the case of a machine tool breakdown presented in
Figure 3, the completed operations Oy, O,;, and Os;, are
excluded from rescheduling, as well as operation O, that
was in progress on a machine unaffected by the failure. On
the other hand, operations O, and O,3;, which were initially
assigned to the failed machine tool after the disturbance
occurred, must be included in the rescheduling process,
along with all operations scheduled for later processing on
other machines (such as O;3 and Os;). The earliest possible
start time of the next operation of job i after the occurrence
of the disturbance can be calculated using equation (4) and

equation (5):

T = c{]’-lk X zi’;‘k + typ X (1 — z{?k), m#r, @))
r, = (clfi + tawr) X 20y + typ X (1= 203), )
m=r,

where r represents the machine tool that has failed.

If m # r, two possible cases arise. The first case occurs
when operation Ojj, was performing at the moment of the
failure of another machine tool, in which case Z[]'-lk =1,ie,

the operation continues to be performed on machine m, and
the equation (4) reduces to the equation (6):

—_ am m m | m m
T = G = {Sijk + Lijie 1Sijie < tmp < Cijk}'

i EN.
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The second case applies when operation Off, was

completed before the failure of the other machine tool, in
which case zj; = 0, since it is unknown whether the next
operation of job i will be performed on the same machine

m as the previous one, as presented in equation (7):

Ty = typ = Max ({c{;?k |c{;?k < tmb},tmb), ieEN. (7)

If m=r and s{jj < tmp < cfjy, this indicates that the
machine tool on which the operation O/}, was in progress

has failed. For the further processing of the interrupted

operation, two cases are possible. The first case assumes

transferring the operation O, to another alternative

machine tool m, in which case z;j, = 0, and equation (5) is
replaced by equation (8):

1 = tmp- (8)

The second case occurs when the operation must resume on
the same machine tool that is currently failed. In this



situation, z;j, = 1, and the repair time tg,, of machine m
must be included, as expressed in equation (9):

= ClT;lk + taur 9

It should be noted that in equation (9), ¢}y, the completion
time of the operation O/}, takes the value t,;, because the
operation is interrupted at the moment the disturbance
occurs. Therefore, that moment is considered the current
end time of processing for operation O;J}.

Following the previous evaluation of the time when
processing of job i can be resumed — 1;, the time at which
the machine tool m can resume processing the job — 7, is

calculated according to expression (10) and equation (11):

T = cl-’]’-‘k X Z{;‘k + top X (1 - zi’}lk), m=+r, (10)
— m m
Tm = (Cijk + taur) X Zijr t (11

+(tmp + taur) X (1 — Z{}lk), m=r.

3 GA METHODOLOGY

A Genetic Algorithm (GA), as a biologically inspired
optimization approach, is employed to generate an optimal
scheduling plan based on the formulated mathematical
model. Accordingly, the GA encodes each scheduling
solution as a chromosome composed of two structured
substrings: the primary substring encodes the operation
sequence that defines the scheduling plan, while the
secondary substring represents the selected alternative
manufacturing process plans (Figure 4). The initial
population is generated according to the number of jobs
and the maximum number of operations, while the
objective functions are evaluated using the mathematical
models for optimization defined in equations (1), (2), and
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Figure 4. Scheduling plan and alternative
manufacturing processes

To obtain optimal scheduling plans, the GA implements an
iterative evolutionary process. At the beginning, the
following parameters are initialized: the population size,
the total number of generations, the crossover probability
Po, the mutation probability p,, and the number of elite
chromosomes. Elite chromosomes represent the best
individuals of the current generation and they are passed
directly into the next generation. Each generation is
improved by applying the GA operators of selection,
crossover, and mutation. This process allows the algorithm
to explore a vast solution space, maintain diversity, and
converge toward optimal or near-optimal schedules.
Selection involves selecting two parent chromosomes from

the current population using roulette-wheel selection,
where the probability of choosing a particular chromosome
is proportional to its objective function value.

During the crossover step, the operator is first applied to
the secondary substring, in which randomly selected genes
from Parentl and Parent2 define the secondary substring of
Offspringl (Figure 5). Offspring! inherits the second gene
from Parentl in its secondary substring which represents
the gene for the second job; therefore, the corresponding
genes from the primary substring of Parent! are copied into
the same positions of Offspringl (including the zero
element). The remaining positions are then sequentially
filled with the remaining genes from Parent2. Similarly,
Offspring? is created by reversing the parental roles: the
same exchange is applied to the secondary substring, the
corresponding genes from the primary substring of Parent2
are copied into their positions, and the empty positions are
filled with the remaining genes from Parent]l.
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Figure 5. Crossover

The first mutation operator is a two-position swapping
mutation, performed in three steps. First, one Parent
chromosome is selected. Second, two genes within the
primary substring (the scheduling plan) are randomly
chosen. Finally, a new Offspring chromosome is generated
by exchanging the positions of the randomly selected genes
(Figure 6).

parent | 1[3[2[1]2]0[3]1[2][3]3]1]

. —,
offspring | 1 [3[2[3[2]o]1|1]2]|3]3]1]

Figure 6. First mutation operator

The second mutation operator is used to generate new
Offspring by modifying one alternative manufacturing
process plan of a selected job. This operator changes a
single gene in the secondary substring, in this way
introducing a different alternative process plan for the third
job and increasing the diversity of potential scheduling
solutions (Figure 7).

parent [3[1[1]2]2[3[2]0[1][1]1]2]
mmeUUQQBQéUUDéj

Figure 7. Second mutation operator

When a disturbance occurs, the GA generates an optimal
rescheduling plan by repeating the same evolutionary steps



of selection (via roulette wheel), crossover, and mutation,
considering machine tool breakdowns. In this process, the
initial population is generated to reflect the current state of
the manufacturing system.

4 RESULTS AND DISCUSSIONS

To verify the mathematical models developed for the
DFJSS problem under machine tool breakdowns, two
comprehensive experiments were carried out using
Problem 24 from the relevant literature. This problem
includes 18 benchmark jobs with AND/OR networks of
alternative manufacturing processes, all adopted from the
reference [10]. For each job, three alternative process plans
were generated and wused during the scheduling
optimization.

A genetic algorithm was applied for both the initial
scheduling and the rescheduling process following a
machine breakdown disturbance. The first experiment used
balanced machine utilization as the objective function for
the optimization, while the second experiment focused on
minimizing mean flow time. For the initial scheduling
phase, the GA parameters were set to a population size of
100, a maximum of 80 generations, a crossover probability
of 0.8, a mutation probability of 0.2 and 2 elite
chromosomes. In the rescheduling phase, the population
size was increased to 120 and the number of generations to
100 to enhance solution diversity after the disturbances.
The crossover and mutation probabilities, as well as the
number of elite chromosomes, were kept identical to those
used in the initial phase. The proposed method and the
corresponding experiments are implemented and tested in
MATLAB?® environment.

The scheduling of the selected manufacturing processes for
the initial set of jobs (1-2-3-4-5-6-7-8-9-10-11-12-13-14-
15-16-17-18 — Problem 24) proceeded without disturbance
until the breakdown of machine tool M2 at 30 s, machine
tool M7 at 20 s, machine tool M10 at 40 s, and machine
tool M13 at 35 s, with each machine requiring a different
amount of time to be to be fixed and become operational
again. In the initial phase, before any breakdowns occurred,
the GA generated an initial scheduling plan that selected
alternative manufacturing processes for all eighteen jobs.
Within the proposed rescheduling strategy, the schedule is
not updated at the exact moment an individual breakdown
occurs. Instead, all breakdown events are first identified
based on their start times and durations, after which the
affected operations are detected and removed from the
original schedule. A new partial schedule is then generated
that contains only the operations completed prior to the
occurrence of any machine tool breakdown.

Once all machine tools are restored and available again, a
single global rescheduling process is performed. The GA is
then applied to reschedule only the remaining operations,
ensuring that all machine tool failures (regardless of their
order or timing) are handled simultaneously through a
single rescheduling process.

A new primary substring is generated to encode all
unfinished operations, including those in progress at the
time of the breakdowns or scheduled to start during
downtime on the failed machine tools. A new secondary
substring is also generated, reflecting the updated selection

of alternative manufacturing processes available for each
job. During this step, if an alternative process plan that
avoids machine tools affected by breakdowns is available,
the algorithm selects this alternative to achieve a more
efficient rescheduling. If an alternative process of this type
is not available for a particular operation, the operation
remains assigned to its original machine tool, but its earliest
possible start time is shifted to the moment when the
machine is fully functional again. In such cases, the start
time is computed as the breakdown end time plus the
required transportation time from the previous machine, if
applicable. In the second phase, the GA performs
rescheduling using the updated set of operations and
manufacturing routes, ensuring that all remaining
operations comply with the constraints imposed by
machine tool downtime and the subsequent machine
recovery process.

Figure 8 shows the Gantt chart representing the initial,
optimal scheduling plan prior to the machine tool
breakdowns, obtained by applying balanced machine
utilization (obj1) as the objective function.
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Figure 8. Gantt chart of the initial scheduling plan
(balanced machine utilization - obj1)

After the four machine tool breakdowns and the following
optimization, a new rescheduling plan is formed and
shown in Figure 9.
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Figure 9. Gantt chart of the rescheduling plan
(balanced machine utilization - obj1)



Figure 10 illustrates the initial optimal scheduling plan
before the machine tool breakdowns, generated using
mean flow time (0bj2) as the objective function.
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Figure 10. Gantt chart of the initial scheduling plan
(mean flow time - obj2)

As in the previous experiment, following the four
machine tool breakdowns and the subsequent
rescheduling process, a new optimized plan is generated
and shown in Figure 11.
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Figure 11. Gantt chart of the rescheduling plan
(mean flow time - obj2)

The resulting Gantt charts confirm that the proposed
method successfully generates a new rescheduling plan
under multiple machine tool breakdowns. In both
experiments, the algorithm effectively reschedules the
remaining operations to the available machine tools, while
respecting process constraints, operation sequences, and
downtime intervals. The balanced machine utilization
criterion leads to a more uniform workload distribution
across machines, whereas the mean flow time criterion
results in faster completion of individual jobs. Overall, the
visualized schedules demonstrate that the method
maintains system stability and achieves the intended
optimization objectives despite significant disturbances.

5 CONCLUSION

This research analyzed the flexible job shop rescheduling
process under machine tool breakdowns occurring on
multiple machines at different time instances, reflecting
real cyber-induced disturbances in modern manufacturing

environments. By employing a GA and evaluating the
performance of the manufacturing system through
balanced machine utilization and mean flow time, the
proposed approach demonstrated the ability to efficiently
reschedule operations during periods of machine
unavailability while maintaining overall stability.

Two separate experiments were carried out, one focusing
on balanced machine utilization and the other on
minimizing mean flow time, to evaluate the overall
performance of the manufacturing system under different
optimization objectives. The results indicate that, even
when disturbances interrupt the workflow, the system can
dynamically reschedule the remaining operations across
the available machine tools without creating excessive
bottlenecks or overloading specific resources. Once the
consequences of the cyber-attacks and the corresponding
machine tool failures are resolved, the approach
effectively reintegrates the recovered machine tools into
the rescheduling plan, resulting in successful optimization
of the defined criteria. Therefore, this adaptability
contributes to a more uniform workload distribution and
reduced flow times, ensuring a robust and resilient
scheduling process under security-driven disturbances.
Future research may focus on incorporating predictive
mechanisms for early disturbance detection, as well as on
exploring advanced or hybrid metaheuristic methods to
further improve responsiveness and enhance the resilience
of scheduling systems operating in cybersecurity-aware
manufacturing environments.
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