Dr Miroslav Pajić

Personal data

Address:

Duke University Department of Electrical and Computer Engineering 415 Wilkinson Building, 534 Research Dr Durham, NC 27710, USA

Phone:

+1 267 340 2487

E-mail:

miroslav.pajic@duke.edu

Nationality:

USA, Serbian

Date of birth:

November 14, 1979

Place of birth:

Čačak, Serbia, SFRY

Research or academic title

Associate Professor

Research field/area

High-assurance Cyber-Physical Systems (CPS) with varying levels of autonomy and human interaction, in a range of application domains (e.g., robotics, autonomous vehicles, medical devices and systems); Secure and robust edge-based autonomy; Dataand model-based system design; AI, controls and embedded systems

Education

2012 Ph.D. in Electrical Engineering

University of Pennsylvania, Philadelphia, PA Dissertation title: Closing the Loop: Architectures and Algorithms for Real-Time Control over Wireless Networks

Joseph and Rosaline Wolf Best Dissertation Award

2010 M.S. in Electrical Engineering

University of Pennsylvania, Philadelphia, PA

2007 Magister Scientiae – MSc - El. Eng. (four semesters & thesis-research prerequisite to PhD)

University of Belgrade - School of Electrical Engineering

Department of Electronics

Thesis title: Multirate digital signal processing for timing synchronization in digital modems design

2003 Dipl.-Ing. – El. Eng. (ten semesters with diploma work)

University of Belgrade - School of Electrical Engineering Department of Electronics

Thesis title: Receiver with coherent detection of PSK signal in power grid

Best Student Award

Employment

July	Dickinson Family Associate Professor
2020-	Duke University, Durham, NC
Present	Department of Electrical and Computer Engineering
	Department of Computer Science
	Department of Mechanical Engineering and Material
	Science

Jan. Nortel Networks Assistant Professor

2018 – Duke University, Durham, NC

June | Department of Electrical and Computer Engineering

2020 Department of Computer Science

July Assistant Professor

2015 – Duke University, Durham, NC

June Department of Electrical and Computer Engineering

2020 Department of Computer Science

Aug. Adjunct Assistant Professor

2014 – Duke University, Durham, NC

June Department of Electrical and Computer Engineering 2015

Oct. Postdoctoral Researcher

2012 – University of Pennsylvania, Philadelphia, PA

Languages

Serbian, English

Number of citations (excluded self-citations, source: Scopus)

2718

Hirsch index (excluded selfcitations, source: Scopus)

27

Other information

2015- Head of Cyber-Physical Systems Laboratory at Duke University, Department of Electrical and Computer Engineering;

2022- Director of Master Studies at Duke University, Department of Electrical and Computer Engineering;

2019 General Chair, NSF CPS PI meeting, Washington DC, November

2014- NSF proposal panels: CPS 2014, 2016, 2018, 2020, CISE 2015, 2018, 2019, SaTC 2017

2015- Reviewer for Canadian funding agencies: NSERC (2019) and Mitacs Accelerate (2017-2018), Technology Foundation STW, Netherlands' research council for the engineering and applied sciences (2015), Research Grants Council (RGC) of Hong Kong (2019)

Journal Editor

- Associate Editor, ACM Transactions on Cyber-Physical Systems, 2022present.
- Associate Editor, ACM
 Transactions on Computing for Healthcare (ACM HEALTH), 2018-present.

June 2015	Department of Electrical and Systems Engineering PRECISE (The Penn Research in Embedded Computing and Integrated System) Center
Sept. 2008 – Sept. 2012	Research Assistant University of Pennsylvania, Philadelphia, PA Department of Electrical and Systems Engineering
Feb. 2008 – Aug. 2008	Research Scholar University of Pennsylvania, Philadelphia, PA Department of Electrical and Systems Engineering
2003- 2008	Teching Assistant University of Belgrade - School of Electrical Engineering

Experience in competitive public calls in previous 5 years

Athena

Project name: AI Institute for Edge Computing Leveraging Next Generation Networks (Athena), Award Number: 2112562

Relevant Project for MCSecurity

Department of Electronics

Funding source: National Science Foundation (NSF)

Implementation period: 2021-2026.

Awarded grant amount: 20,000,000.00 USD

Project PI: Yiran Chen

Role of Miroslav Pajic: Co-PI

KEY RESULTS OF Athena:

Conference papers:

- Khazraei, A., Meng, H., Pajic, M., Stealthy Perception-based Attacks on Unmanned Aerial Vehicles, In IEEE International Conference on Robotics and Automation (ICRA), pp. 3346-3352, June 2023, https://doi.org/10.1109/ICRA48891.2023.10160900
- 2. Naeem, M. A. Pajic, M., Concentration Phenomenon for Random Dynamical Systems: An Operator Theoretic Approach, In Proceedings of The 5th Annual Learning for Dynamics and Control Conference (L4DC), PMLR 211:1-12, 2023.
- 3. Hallyburton, R. S., Zhang, S. Pajic, M. **AVstack: An Open-Source, Reconfigurable Platform for Autonomous Vehicle Development**, In 14th
 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), pp. 209–220, May 2023, https://doi.org/10.1145/3576841.3585930

• Guest-editor, Special Issue on Medical Cyber-Physical Systems, ACM Transactions on Cyber-Physical Systems, 2016-2017. 4. Khazraei, A., **Pajic, M.**, **Resiliency of Nonlinear Control Systems to Stealthy Sensor Attacks**, In 61st
IEEE Conference on Decision and Control (CDC), pp. 7109-7114, Dec. 2022,
https://doi.org/10.1109/CDC51059.2022.9992988

5. Hallyburton, S. Khazraei, A., Pajic, M., **Optimal Myopic Attacks on Nonlinear Estimation**, In 61st
IEEE Conference on Decision and Control (CDC), pp. 5480-5485, Dec. 2022,
https://doi.org/10.1109/CDC51059.2022.9992711

Assured Autonomy

Project name: AFOSR Center of Excellence in Assured Autonomy in Contested Environments Relevant Project for MCSecurity

Funding source: Air Force Office of Scientific Research

(AFOSR)

Implementation period: 2019-2025.

Awarded grant amount: 1,489,759.00 USD

Project PI: Warren Dixon **Role of Miroslav Pajic:** Co-PI

KEY RESULTS OF Assured Autonomy

Journal papers:

- Lesi, V., Jakovljevic, Z., Pajic, M., Security-Analysis for Distributed IoT-Based Industrial Automation, IEEE Transactions on Automation Science and Engineering, Vol. 19, No. 4, pp. 3093-3108, October 2022. https://ieeexplore.ieee.org/document/9528498
- Jakovljevic, Z., Lesi, V., Pajic, M., Attacks on Distributed Sequential Control in Manufacturing Automation, IEEE Transactions on Industrial Informatics, Vol. 17, No. 2, pp. 775-786, Feb. 2021, https://ieeexplore.ieee.org/abstract/document/9068503
- 3. Jovanov, I., **Pajic, M.**, **Relaxing Integrity Requirements for Attack-Resilient Cyber-Physical Systems**, IEEE Transactions on Automatic Control, Vol. 64, No. 12, pp. 4843-4858, December 2019, doi: 10.1109/TAC.2019.2898510
- Wang, Y., Zarei, M., Bonakdarpour, B., Pajic, M., Statistical Verification of Hyper-properties for Cyber-Physical Systems, ACM Trans. Embed. Comput. Syst., Vol. 18(5s), pp. 92:1–92:23, 2019, https://dl.acm.org/doi/10.1145/3358232
- 5. Zhu, H., Cummings, M. Elfar, M. Wang, Z., **Pajic, M.**, **Operator Strategy Model Development in UAV Hacking Detection**, IEEE Trans. on Human-Machine Systems, Vol. 49, No. 6, pp. 540-549, Dec 2019, https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8 653416

Conference papers:

- 6. Khazraei, A., Pfister, H., **Pajic, M., Resiliency of Perception-Based Controllers Against Attacks**, In
 Proceedings of the 4th Annual Learning for Dynamics
 and Control Conference (L4DC), PMLR 168:713-725,
 June 2022 (Spotlight presentation),
 https://proceedings.mlr.press/v168/khazraei22a/khazraei
 22a.pdf
- Khazraei, A., Hallyburton, S., Gao, Q., Wang, Y., Pajic, M., Learning-Based Vulnerability Analysis of Cyber-Physical Systems, In 13th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), pp. 259-269, May 2022, doi: 10.1109/ICCPS54341.2022.00030
- 8. Sun, S., Zhang, Y., Luo, X., Vlantis, P., **Pajic, M.**, Zavlanos, M., **Formal Verification of Stochastic Systems with ReLU Neural Network Controllers**, In IEEE International Conference on Robotics and Automation (ICRA), pp. 6800-6806, June 2022, doi: 10.1109/ICRA46639.2022.9811866
- 9. Bozkurt, A. K., Wang, Y., **Pajic, M., Model-Free Learning of Safe yet Effective Controllers**, In 60th
 IEEE Conference on Decision and Control (CDC), pp. 6560-6565, December 2021, doi: 10.1109/CDC45484.2021.9683634
- 10. Khazraei, A., **Pajic, M., Perfect Attackability of Linear Dynamical Systems with Bounded Noise**, In
 2020 American Control Conference (ACC), pp. 749754, June 2020, doi:
 10.23919/ACC45564.2020.9147833

CAREER

Project name: CAREER: Foundations for Secure Control of Cyber-Physical Systems, Award Number: 652544 Relevant

Project for MCSecurity

Funding source: National Science Foundation (NSF)

Implementation period: 2017-2024.

Awarded grant amount: 530,339.00 USD

Project PI: Miroslav Pajic **Role of Miroslav Pajic:** PI

KEY RESULTS OF CAREER:

Journal papers:

 Khazraei, A., Pajic, M., Attack-resilient state estimation with intermittent data authentication, Automatica, Vol. 138, art. no. 110035, 2022, https://doi.org/10.1016/j.automatica.2021.110035
 Relevant Publication for MCSecurity

- 2. Luo, X., Pajic, M., Zavlanos, M., An optimal graphsearch method for secure state estimation, Automatica, Vol. 123, art. no. 109323, 2021, https://doi.org/10.1016/j.automatica.2020.109323 Citation Details
- 3. Jakovljevic, Z., Lesi, V., Mitrovic, S., **Pajic, M.**, **Distributing Sequential Control for Manufacturing Automation Systems**, IEEE Transactions on Control Systems Technology, Vol. 28, No. 4, pp. 1586 1594, 2020 https://doi.org/10.1109/TCST.2019.2912776
- 4. Lesi, V., Jovanov, I., Pajic, M., Integrating Security in Resource-Constrained Cyber-Physical Systems, ACM Transactions on Cyber-Physical Systems, Vol. 4, No. 3, art. no. 28, 2020, https://doi.org/10.1145/3380866 Relevant Publication for MCSecurity
- Miao, F., Zhu, Q., Pajic, M., and Pappas, G. J., A hybrid stochastic game for secure control of cyberphysical systems, Automatica, Vol. 93, pp. 55-63, 2018, doi: 10.1016/j.automatica.2018.03.012 Citation Details

Conference papers:

- Hallyburton, S. R., Liu, Y., Cao, Y., Mao, Z. M., Pajic, M., Security Analysis of Camera-LiDAR Fusion Against Black-Box Attacks on Autonomous Vehicles, IN 31st USENIX Security Symposium (USENIX Security 2022), pp. 1903-1920, Aug 2022, https://www.usenix.org/biblio-12506
 Relevant Publication for MCSecurity
- 7. Wang, Y., Zarei, M., Bonakdarpour, B., **Pajic, M.**, **Probabilistic Conformance for Cyber-Physical Systems**, In 12th ACM/IEEE International Conf. on Cyber-Physical Systems (ICCPS), pp. 55-66, May 2021, https://dl.acm.org/doi/10.1145/3450267.3450534
- 8. Bozkurt, A. K., Wang, Y., Pajic, M., Secure Planning **Against Stealthy Attacks Model-Free** via Reinforcement Learning, **IEEE** International Conference on Robotics and Automation (ICRA), pp. 10656-10662, 2021, May doi: 10.1109/ICRA48506.2021.9560940
- 9. Hallyburton, R. S., Khazraei, A., **Pajic, M., Optimal Myopic Attacks on Nonlinear Estimation**, In 2022
 IEEE 61st Conference on Decision and Control (CDC),
 pp. 5480-5485, 2022,
 https://doi.org/10.1109/CDC51059.2022.9992711
- 10. Khazraei, A., Pajic, M., Resiliency of Nonlinear Control Systems to Stealthy Sensor Attacks, In 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 7109-7114, 2022 https://doi.org/10.1109/CDC51059.2022.9992988 Citation Details

1UH3NS129898-01

Project name: An Integrated Biomarker Approach to Personalized, Adaptive Deep Brain Stimulation in Parkinson

Disease, Award Number: 1UH3NS129898-01

Funding source: National Institutes of Health (NIH)

Implementation period: 2023-2027.

Awarded grant amount: 4,457,893.00 USD

Project PI: Dennis Turner

Role of Miroslav Pajic: Co-Investigator

KEY RESULTS OF 1UH3NS129898-01:

Journal papers:

1. Schmidt S.L., Chowdhury A.H., Mitchell K.T., Peters J.J., Gao Q., Lee H.J., Genty K., Chow S.C., Grill W.M., **Pajic M.**, Turner D.A., At home adaptive dual target deep brain stimulation in Parkinson's disease with proportional control, Brain, Vol. 147, No. 3 pp. 911-922, Mar. 2024, doi: 10.1093/brain/awad429

Small

Project name: Transforming Computer Architecture Evaluation with Statistical Model Checking, Award Number: 2133160

Funding source: National Science Foundation (NSF)

Implementation period: 2021-2024.

Awarded grant amount: 500,000.00 USD

Project PI: Daniel Sorin

Role of Miroslav Pajic: co-PI

KEY RESULTS OF 1UH3NS129898-01:

Conference papers:

 Dobe, O., Schupp, S., Bartocci, E., Bonakdarpour, B., Legay, A., Pajic, M., Wang, Y., Lightweight Verification of Hyperproperties. In: André, É., Sun, J. (eds) Automated Technology for Verification and Analysis. ATVA 2023, Lecture Notes in Computer Science, Vol. 14216, pp 3–25, 2023, Springer, Cham. https://doi.org/10.1007/978-3-031-45332-8

Additional 2 publications relevant for MCSecurity (2 are listed as key references 1, 4 and 6 of CAREER)

 Pajic, M., Lee, I., Pappas, G. J., Attack-Resilient State Estimation for Noisy Dynamical Systems, IEEE Transactions on Control of Network Systems, Vol. 4, No. 1, pp. 82 -92, March 2017, doi: 10.1109/TCNS.2016.2607420 Relevant Publication for MCSecurity Pajic, M., Weimer, J., Bezzo, N., Sokolsky, O., Pappas, G. J., Lee, I., Design and Implementation of Attack-Resilient Cyber-Physical Systems: With a Focus on Attack-Resilient State Estimators, IEEE Control Systems Magazine, Vol. 37, No. 2, pp. 66-81, April 2017, doi: 10.1109/MCS.2016.2643239 Relevant Publication for MCSecurity

Additional 2 projects relevant for MCSecurity

- **2023- Pajic, M.**, et al.
- 2025 General Framework for Vulnerability Analysis of Cyber-Physical Systems,
 Project funded by Office of Naval Research (ONR)
- 2015- Lee, I., Pappas, G., Pajic, M., et al.
 2020 Synergy: Collaborative: Security and Privacy-Aware Cyber-Physical Systems
 Project funded by National Science Foundation (NSF) and Intel Partnership, CPS-Security Program

Products, services related to MCSecurity

- 1. **AVStack** An open-source, reconfigurable software platform for AV design, implementation, test, and analysis. https://www.avstack.org/, 2023.
- 2. **ARSC** open-source tool for design of *attack-resilient supervisory controllers*, https://gitlab.oit.duke.edu/cpsl/arsc, 2019.
- SMCLearning Statistical model checker for deepneural-network-based cyber-physical systems, https://gitlab.oit.duke.edu/cpsl/smclearning, 2019.
- 4. **MPHyper** Symbolic motion planner for HyperLTL objectives, https://gitlab.oit.duke.edu/cpsl/mp_hyper, 2019.
- 5. **RESCHU-SA**: An open-source extendable virtual platform for studying the impact that a human-on-the-loop have on security and resiliency of cyber-physical systems with varying levels of autonomy, 2017.